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Green function for an axially symmetric potential field: 
a path integral evaluation in polar coordinates 
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The Philippines 

Received 21 December 1990 

Abstract. An explicit evaluation of the path integral in spherical polar Coordinates for the 
Green function of a particle moving in an axially symmetric potential field is presented. 
A closed form of the Green function is obtained from which the energy eigenvalues and 
the normalized eigenfunctions are obtained as the poles and the residues at the poles, 
respectively. 

1. Introduction 

Through a path integral derivation of the Green function, the exact wavefunctions and 
energy spectrum will be obtained for a non-relativistic particle of mass M moving in 
the three-dimensional axially symmetric potential field described by 

where ao= ( f i 2 / M e 2 )  and q , = ( - M e 4 / 2 h 2 )  are the Bohr radius and the ground-state 
energy of the hydrogen atom, respectively. 7 and U are positive dimensionless para- 
meters that can be adjusted to regulate the potential minimum while q and g are 
constants such that qLigi. As seen from ( l . l ) ,  the particle Is constrained to move in 
the torus-shaped potential field with the entire z-axis (6'=0, T) as an inaccessible 
region. When q = 1 and g = 0, V reduces to the Hartmann potential [ 11. When g = iq, 
we have Voc{q/r2(1+cos O)}, which have line singularities on the 0=0 or  O = T  
half-lines. The case q = g = 0 corresponds to the Coulomb potential. 

The potential V belongs to a class of potentials included in the systematic search 
by Makarov et al [ 2 ]  for systems with dynamical symmetries for which they found 
extra integrals of motion. Although the special case of the Hartmann potential has 
been the subject of interest in recent years [3-81, the possibility of working with the 
more general potential in the form (1.1) as a physically applicable model for axially 
symmetric systems remains to be investigated. Interestingly, the solutions for the special 
cases g = * q  remind us of the monopole harmonics of Wu and Yang [9], the spin- 
welgnreu sprierlcar narrriurilca "1 l ~ r w i i i a i i  ail" r ~ i i i u b ~  LLUJ ail" ~ r i u ~ r  u1 ~ i i r  ayrrimerrlC 
top [ I l l .  The connection between these functions are discussed in [12] .  

Using Feynman's path integral approach, the Green function will he derived directly 
in spherical polar coordinates by applying the techniques in polar coordinate path 
integration [13,14] and the procedure for handling the Coulomb-type radial path 
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integral [15]. With this method, a closed form for the Green function is obtained in 
terms of Whittaker functions of the radial variable, hypergeometric functions of the 
polar angle 0, and the usual azimuthal dependence for axially symmetric systems. The 
negative energy eigenvalues are obtained from the poles of the Green function and 
the residues at the poles provide the correctly normalized wavefunctions. Our results 
coincide with those derived earlier using the path integral approach [I61 but which 
involved the application of the Kustaanheimo-Stiefel (KS) transformation of coordin- 
ates and reparametrization of time [171. The KS procedure has been used to reduce 
the path integral for the Coulomb-Green function into harmonic oscillator form 
[18, 191. However, since the KS transformation is a non-bijective transformation which 
converts the problem for V in R3 into that of two two-dimensional harmonic-plus- 
inverse-square oscillators in R‘ subject to a constraint, its application within the path 
integral is highly non-trivial. Thus, the evaluation of the path integral for the Green 
function directly in spherical polar coordinates provides a more natural and straightfor- 
ward alternative to our earlier path integral treatment using the KS transformation. 

2. Path integral derivation of the Green function 

In Feynman’s formulation, the propagator is given as the path integral [20], 

K(r”,r‘; T ) =  exp[(i/h)S]%(t) (2.1) J 
where %(t) indicates an integration over all paths linking r’ and r”, and S =j:: L df. 
For systems with Coulomb-type radial dependence, the propagator has not been found 
in closed form. Hence; the Green function G(r”; r‘; E )  = (r“!(E - H)-’!r‘) is evaluated 
instead since its poles and residues at the poles yield the energy spectrum and the 
wavefunctions. To accommodate the explicit calculation of the Green function within 
the path integral method, we note that the Fourier transform of the propagator gives 

G(r”, r’; E)=(ih)- l  K(r”, r’; T )  exp(iET/h) dT (2.2) I 
I 

which can be rewritten as 

G(r”,r’; E)=(ih)-’  P(r”,r’; T ) ~ T  (2.3) 

where T =  f ” - t ‘  and P(r”,r’;  ~ ) = ( r ” ! e x p { - ( i / h ) ~ ( H - E ) } ! r ’ ) .  In view of the role it 
piays in the appiication of coordinate-dependent time transformations in the path 
integral, P(r”,  r’; T )  has been called the promotor [21]. It can be expressed as a path 
integral analogous to (2.1) but given in terms of the modified action (Hamilton’s 
characteristic function), W = J ( L +  E )  dt. In time-sliced form, the promotor is given by 

N N - I  

P(r”, r’; T)= lim 1 fi exp[(i/h)W,] n [M/2.rrih51”2 n dr,. (2.4) 
N-m , ,-I ,=: ,=: 

Here, ( T /  N )  = 5 = I, - $-, , r, = r( f,), ro = r‘, rN = r”, and the modified action for each 
short-time interval is 

W ,  =(M/27)(Ar,)*- V ( ~ , ) T , + € T , .  (2.5) 
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In spherical polar coordinates, r~ (0, CO), e E ( 0 , ~ )  and 4 E (0, Z T ) ,  determined hy 
the relations, x = r sin 0 cos 4, y = r sin e sin $, and z = r cos 8, the short-time modified 
action for the system described by an axially symmetric potential takes the form: 

W , = ( M / 2 q ) { r j + r j ~ , - 2 q r j _ , c o s  e,cos ej-,-2Qq-, sin 0, sin e,-, 
x COS( 4j - 4j-t)} - v (  5, 0 j ) q  + ET,. (2.6) 

The corresponding measure of the path integral in (2.4) is 
N N-l N N-l  n (M/2?iifiq)'/* n d3r, = n ( M / 2 ? r i f i ~ , ) ~ ' ~  n r:sin 0, d q  de, d4,. 

, = I  , = I  , = I  j - ,  

By making use of the expansion, 
m 

exp(5cos 6/7,)= exp(im6)Im(C/.rj) (2.8) 
m=-m 

the $-dependent terms can immediately be separated allowing us to write: 

exp( iy . / f i )=  1 exp{im(A4j)) exp[(iM/2fi~,){r:+r;-,-Zqq-, cos 0, cos 
m 

m=-m 

x rm(Mrjq-l  sin e, sin O,-,/ifiT,) exp{iqE/fi -iT,V(q, 0,)/fi}. (2.9) 

In turn, the modified Bessel function IA([/.,) in (2.8) can be expanded for small q as, 

(2.10) I,( e/ T j )  = (q/2715)'/' eXp{ (e/ T j )  - f (  A2 -:)q/t+o( T j ) }  

where, for non-integral order A, the modulus J A l  is taken. Furthermore, in path 
integration, only terms up  to first order in rj give significant contributions to the path 
integral. With (2.10), we can express (2.9) in the form, 

exp(iW,/fi) = (ifi?,'Z&fqr,-, sin 8, sin 1 exp{im(A4j)) 

xexp[(iM/2fiTj)(r;+ r;$,)+(M/ifiTj)r,G-, cos(A0,) 

m 

m=-m 

- g m 2 - - )  ifiT,/Mqq-, sin e, sin ej-,-iTjV(rj, O,)/h+i~,E/fi]. (2.11) 

Then, we notice that, if in (1.1) we make the substitutions, A = - (q+g)T2u2a&,  
B=- (q -g )q2u2a&, ,  and K = - 2 v n 2 a , & , ,  we get 

B + (2.12) 
K A 
5 4rj+, sin@,) sin(!e,_,) 4qq-, cos(fe,) cos(;ej_,)' 

v(q, e,)= --+ 
The angular kinetic term can also be expressed in terms of half-angles as 

exp{(M/ifiq)qq_l cos(AOj)} 

= exp{4Mq+, cos(tA8,)/ifirj + (3ifi~,/32Mqq_,) 

- 3 Mqrj- ,/ i f i ~ ,  + O( ~j)} 
where we have used the relation 

cos(A0,) = 4  cos(fA0,) -3 +f(fAO,)"+o( T:). 

The fourth-order terms have been replaced, 

exp{(Mqr, - , /2 i f i~ , ) (~Ae~)~}~  exp(3ihq/32Mqr,-,) 

(2.13) 

(2.14) 
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following the procedure in appendix A of [141. Thus, with (2.12) and (2.13). we arrive 
at the relation, 

exp(i y./fi) = (ifiq/SnMqq-,) 112 {sin(fe,) . sin(fe,-,))”’{cos(fe,) cos(!@,_,))-’/2 
m 

x 1 exp(im(A+,)} exp[(iM/2fiTj)(r:+ r:-,)+iKq/fiq -3Mrjrj-Jifi5 

+3ifiq/32Mqq-, + (4M/ifyj)rjrj-, cos(@,) cos(fO,_,) 

+(4M/ih~,)r,r,_, sin(@,) sin(fe,-,) +iTjE/fi 

-{i(m’-:) + A M /  f i2)~j / (4M/if i )q5-l  sin(f0,) sin(fO,_,) 

-(f(m2-~)+BM/fi2}q/(4M/ifi)r,rj-, cos(f0,) cos(~O,-,)] (2.15) 

which can be simplified by applying (2.10) once more. Equation (2.15) can then be 
rewritten as 

exp(iW,/fi) = (,~ifiq/2Mq5-,)-”* Z: exp(im(A+,)+ (iM/2fi~,)(r;+ r:+,) 

m = - m  

m 

m = - m  

+iKq/hq)  exp(ir,E/fi) exp(-il+3/8() 

x I.{[ sin(@,) sin(&8j-l)}Ig{l cos(f0,) cos(fe,_,)] (2.16) 

where [=4Mqq-l / i f i~j ,  ~ = + ( m ~ + 2 A M / f i ~ ) ‘ / ~  and p = + ( m 2 + 2 B M / f i 2 ) ‘ / 2 .  With 
(2.16), the terms depending on the polar angle can be separated from the radial ones 
by using the formula [22], 

[I , ([  sin a sin p)I,(( cos a cos p )  = 2(sin a sin p)”(cos a cos 0)’ 
m 

x ( u + p + 2 / + i ) r ( u + p + ~ + i ) r ( ~ + ~ + i )  

xu!r( lL+ I +  i))-’{r(U+ 1))-2~.+,+2r+1(5) 

I=0 

x2F,{-/, u + p +  /+ I ;  U +  1; sin2(&)} 

x2F,{-I, u + p + I +  1; u + l ;  sin2(#)}. (2.17) 

Using (2.17) in (2.16) and substituting the result in (2.4), we obtain the following 
expression involving the integrations of the angular terms 

x ~ F , [ - ( ,  u,+pj+ (+ I; uj+  1; sin’(fe,)] 
x,F,[-/,, U, + p j +  I,+ I; U,+ 1; sin 2 1  (10,+~)1 

N - l  

x n sin e, de, d+, 
j - 1  

(2.18) 

where 
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and with the summations and products interchanged. To perform the multiple integra- 
tions in (2.18), we use the orthonormalization for the hypergeometric polynomials [22], 

/:sin2”(jO) cos2P(fO)P:p(cos O)P;P(cos 0)  sin 9 dB 

(2.19) 
- zrxY + + i ) q y  + p + 1) - 

(2y+ a + p +  i ) y ! r ( y  +a + p + 1) ’,, 
... I.̂-̂ .t.- I^^^ L: ..-,..--- :“,L ” - ~  --,-.--I .̂  .L^ L :- ‘- ___^. :--- ^ ^  
W,,T,C ,,I= ,acuu, yuryrrurrrrc,s dlc: LCldLS” L U  LIIC: LIyp~’g‘”1LLcLL1c I”IICLIUIIS ‘ab 

P:,@(X) = ( y ; a )  ’F , ( - y ,  y + a + p  + 1; a+ I ;  f-ix).  

Integration then yields the separated promotor for the axially symmetric potential 
V in (1.1): 

F i r ” ,  9”, 6”; r’, 9, 6‘; T) 
m m  

= (21r)-’ exp{im(+”- @’)} 
m=-m I=0 

x ( u + p + 2 1 +  ~ ) [ r ( ~ + ~ +  i + ~ ) r ( ~ + i +  i ) / i ! r ( F + i +  i)uyu+ 1)pl 
x * F , { - / ,  u + p + I + 1 ;  u + l ;  sin’(fO”)} 

x2Fl{-1, u + p + I + l ;  u + l ;  sin’(iO’)} 

x (cos(t6”) cos(f9’))”{sin(~9”) sin(fO’)}”Q,,,,(r‘’, r’; T )  (2.20) 
where the radial part is 

x exp[(iM/2h~~)(r:+ + iKTjI/ h r j + i E ~ j / h ]  
N N-I 

j = *  j = ,  
x r , , , , , ,+ ,+ , (Mr,r ;_ , / ih~~)  n ( M / 2 a i h ~ , ) ~ ’ ~  n r: dr; 

N N-I 

j = l  j = l  
-l‘(l‘+l)ih~,/2Mr;r;-,] n (M/27iihq) n dr; 

(2.21) 

(2.22) 

where l ‘ = i ( u + p ) + I .  The radial path integration for the promotor of the Coulomb 
potential as in (2.22) has been done by lnomata [ 151. Using the result and performing 
the integration over T in (2.3), we get the radial Green function, 

G,.,,,(r”, r’; E)  
= iitiiih’ic)iir”r’)i.(u+p+i;+ijj-!rip+f~u+p)+;; 1; 

x M-p,l(v+r)+l+j(-2ikr’) W-p,~(v+ll)+,+l(-2ikr”) (2.23) 

where p = ( - ~ ~ M / 2 h ~ E ) ’ ” ,  k = (2M€/h2)1’2, and M(x)  and W(y) are the Whittaker 
functions. 
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3. Energy eigenvalues and eigenfunctions 

The poles of the Green function yield the discrete energy spectrum. From (2.23), the 
simplepolescorrespondtop+f(u+p)+I+I=-n,for n , = O , 1 , 2 ,  ..., thusgivingthe 
energy eigenvalues: 

(3.1) 

Notethat forfixed m and N=n,+f(u+p)+I+I,therearedegeneraciescorresponding 
to combinations of n, and 1. 

The radial wavefunctions can be obtained by evaluating the residues at the poles 
in the E-plane. This results in 

E””l,,,, = 7 ) 2 U 4 & , / { f l ,  + f (  U + p )  + I +  1}-2. 

RN,( I )  = ( h f ~ / h ~ N ~ ) ’ / ~ [ r (  u + p + 2 / +  I)!]-’  

x { r [ ~  +;( CL)+ I +  i ] / r [~ - f (  y + p )  - 1 1 ) ~ ~ ~  
x hfN,:(,+,,+i+l(2MKr/h2N) 

or, in terms of the confluent hypergeometric functions, 

r )  =2( hfK/h2)3/2(2MKI/h2)1 exp(-MKr/h2N){ fir+*( u + p + 2 l +  l)!}-’ 

X [T{N+f( Y + p )  + I +  I}/T{N - f ( v + p )  - 

(3.2) 

X ,F ,{ -N+f (P+p)+ /+  1, U+p+21+1; 2hfKr/h2N}. (3.3) 

@,,,(b) = (2?r)-’”exp(im@) (3.4) 

The angular wavefunctions can be obtained by inspection from (2.20). We have 

and 

el,,,( e) = [( v + p + z ~ +  i)r( + p +  I +  i)r( I +  ~ ) / / ! r ( ~ +  I +  i){r( U +  I ) ) * ] ~ / ~  

xcosyfe)s in”( fe)  2F,{- / ,  u + p + l + ~ ;  v+l;sin2(f8)}. (3.5) 

4. Conclusion 

We have explicitly evaluated the path integral in spherical polar coordinates for the 
Green function of a particle moving in an axially symmetric potential field. The energy 
eigenvalues and normalized eigenfunctions were obtained as the poles and the residues 
at the poles of the Green function, respectively. Our results coincide with those of an 
earlier path integral treatment [16] involving the Kustaanheimo-Stiefel (KS) trans- 
formation [17]. 

The procedure followed in this work has also been applied to charge-dyon systems 
[231. 
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